
APNAFOOD
Guide to use different tools and technologies.

Table of Contents
-Technology Stack
1. Github
2. MongoDB Atlas
3. Contabo Remote Server
4. DLT
5. React Native and Android Studio Setup

1) GITHUB

Login details -
Email - info@mithranjali.org.in
Password - Orayiram@2020

After sign in using the above credentials, we can see a repository called ‘apnaFood’.
The ‘apnaFood’ repository is the codebase for the mobile app.
The repository has different branches for frontend screens and backend api. Switching to any
of the branches gives access to the code.

2) MongoDB Atlas

The cloud database we are using is MongoDB Atlas.

Login details -
Email - info@mithranjali.org.in
Password - Orayiram@2020

Upon login, we can find cluster 0.

Click on browse collections to find our database and check all the collections.

These are the collections one can find under the database ‘Mithranjali’.
Click on any of the collections to check the data inside it.

In a similar way, new collections can be created and existing collections can be modified.

The above data can be accessed via code, by connecting to the Mithranjali database. The
following lines of code perform the database connection task.

client =

pymong

o.MongoClient("mongodb+srv://sripriya:"+urllib.parse.quote("Orayiram@2020

")+"@cluster0.once1vv.mongodb.net/?retryWrites=true&w=majority",

server_api=ServerApi('1'), connect = False)

 mydb = client.Mithranjali

3) Contabo Remote Server

The application backend is hosted on a remote server.
Here are the details of the server (ip address) -
 www.apnafood.org.in
 130.185.118.141

To connect to the server remotely, we use SSH.
The command is - ssh root@apnafood.org.in
Enter the password - Orayiram@2020

On logged in, we can get into the apnaFood folder and get access to the backend FAST api.

The backend api is hosted. Using nginx we redirect all the api calls to the fastAPI running on a
specific port.

4) DLT

The DLT is used to send SMS otp for user phone number verification.

To do this, the first step is to create a template of the message to be sent on the BSNL dlt
platform.
https://www.ucc-bsnl.co.in/

Once the template is approved on the bsnl dlt, we can utilize the template and send SMS via
textlocal.

The above shown is our active template.

An api key needs to be created in the textlocal platform to use in the code - to send sms in the
specific approved template.

Using this, the code snippet to send SMS looks like this -

otp=randint(1000,9999)

 params = {'apikey':

'NTA2NDZhNjgzNDVhNGYzNTZiMzE2YTczNDQ2YzYxNzk=', 'numbers': phnnum,

'message' : 'Welcome to apnaFood by MITHRANJALI FOUNDATION.\nYour OTP for

registration is ' + str(otp) + '.', 'sender': 'MTRJLI'}

 f = urllib.request.urlopen('https://api.textlocal.in/send/?'+

urllib.parse.urlencode(params))

 return {'otp' : otp}

5) React Native and Android Studio Setup

For the React Native projects, we can either go with an Expo Go or a React Native CLI. The
one used for this project specifically is React Native CLI and steps followed for installation and
configurations.
> Install Node.js on local system.
You will need Node, the React Native command line interface, a JDK, and Android Studio.

Recommended Versions of the technologies used:
Node: >14
Java Development Kit: >11
Android Studio: >

If you're using the latest version of Java Development Kit, you'll need to change the Gradle version of
your project so it can recognize the JDK. You can do that by going to {project root folder}\android\

gradle\wrapper\gradle-wrapper.properties and changing the distributionUrl value to upgrade the Gradle
version. You can check out here the latest releases of Gradle.

> Install Android Studio

Download and install Android Studio. While on Android Studio installation wizard,
make sure the boxes next to all of the following items are checked:

● Android SDK

● Android SDK Platform

● Android Virtual Device

Then, click "Next" to install all of these components.
> Install the Android SDK
Android Studio installs the latest Android SDK by default. Building a React Native app with
native code, however, requires the Android 13 (Tiramisu) SDK in particular. Additional
Android SDKs can be installed through the SDK Manager in Android Studio.
To do that, open Android Studio, click on "More Actions" button and select "SDK Manager".

The SDK Manager can also be found within the Android Studio "Preferences" dialog,
under Appearance & Behavior → System Settings → Android SDK.
Select the "SDK Platforms" tab from within the SDK Manager, then check the box next to
"Show Package Details" in the bottom right corner. Look for and expand the Android 13
(Tiramisu) entry, then make sure the following items are checked:

● Android SDK Platform 33

● Intel x86 Atom_64 System Image or Google APIs Intel x86 Atom System Image

Next, select the "SDK Tools" tab and check the box next to "Show Package Details" here as
well. Look for and expand the Android SDK Build-Tools entry, then make sure that 33.0.0 is
selected.
Finally, click "Apply" to download and install the Android SDK and related build tools.

> Configure the ANDROID_HOME environment variable
The React Native tools require some environment variables to be set up in order to build apps
with native code.

1. Open the Windows Control Panel.

2. Click on User Accounts, then click User Accounts again

3. Click on Change my environment variables

4. Click on New... to create a new ANDROID_HOME user variable that points to the path to
your Android SDK:

The SDK is installed, by default, at the following location:

> Add platform-tools to Path

1. Open the Windows Control Panel.

2. Click on User Accounts, then click User Accounts again

3. Click on Change my environment variables

4. Select the Path variable.

5. Click Edit.

6. Click New and add the path to platform-tools to the list.

The default location for this folder is:

Preparing the Android device

You will need an Android device to run your React Native Android app. This can be either a
physical Android device, or more commonly, you can use an Android Virtual Device which
allows you to emulate an Android device on your computer.
Either way, you will need to prepare the device to run Android apps for development.

Using a physical device

If you have a physical Android device, you can use it for development in place of an AVD by
plugging it in to your computer using a USB cable and following the instructions here.

Using a virtual device

If you use Android Studio to open ./mithranjali/android, you can see the list of available
Android Virtual Devices (AVDs) by opening the "AVD Manager" from within Android Studio.
Look for an icon that looks like this:

Running React Native application

Step 1: Start Metro

First, you will need to start Metro, the JavaScript bundler that ships with React Native. Metro
"takes in an entry file and various options, and returns a single JavaScript file that includes all
your code and its dependencies."—Metro Docs
To start Metro, run npx react-native start inside your React Native project folder:

react-native start starts Metro Bundler.
If you use the Yarn package manager, you can use yarn instead of npx when running React Native commands
inside an existing project.
If you're familiar with web development, Metro is a lot like webpack—for React Native apps. Unlike Kotlin or Java,
JavaScript isn't compiled—and neither is React Native. Bundling isn't the same as compiling, but it can help improve
startup performance and translate some platform-specific JavaScript into more widely supported JavaScript.

Step 2: Start your application

Let Metro Bundler run in its own terminal. Open a new terminal inside your React Native project
folder. Run the following:

If everything is set up correctly, you should see your new app running in your Android emulator
shortly.

npx react-native run-android is one way to run your app - you can also run it directly from
within Android Studio.

Modifying your app

Now that you have successfully run the app, let's modify it.

● Open App.js in your text editor of choice and edit some lines.

● Press the R key twice or select Reload from the Developer Menu (Ctrl + M) to see your
changes

	> Install Android Studio​
	> Add platform-tools to Path
	Preparing the Android device
	Using a physical device
	Using a virtual device

	Running React Native application
	Step 1: Start Metro
	Step 2: Start your application
	Modifying your app

